Machine Learning Engineer - Tech Lead
Kaluza
Location
London, Bristol, Edinburgh
Type
Full-time
Posted
Sep 06, 2025
Compensation
USD 75200 – 103400
Mission
What you will drive
- Develop ML and GenAI Solutions: Design and implement machine learning using Python, leveraging data technologies such as Databricks, Kafka, and the AWS cloud environment. Our architecture is based on microservices, allowing for dynamic deployment of new features.
- Productionise Algorithms: Deploy algorithms into production environments where they can be tested with customers and continuously improved. You'll automate workflows, monitor performance, and maintain data science products using best practices for tooling, alerting, and version control (e.g., Git).
- Contribute to a Collaborative Data Science Culture: Share your knowledge and experience with the wider team. You'll play a key role in fostering an ML / AI community that values openness, collaboration, and innovation.
- Identify Opportunities for Impact: Help uncover new opportunities where ML/AI can add value across our products and services. This includes asking the right questions, identifying high-impact areas, and contributing to the broader data strategy.
Impact
The difference you'll make
Kaluza's vision is to power a world where net-zero is within everyone's reach, and this role helps energy companies overcome today's challenges while accelerating the shift to a clean, electrified future by developing ML/AI solutions that make clean energy dependable, affordable and adaptive to everyday life.
Profile
What makes you a great fit
- Proven experience leading teams in real-world ML / AI projects, with a strong understanding of core algorithms, data structures, and model performance evaluation.
- Proficiency in Python, including libraries such as Scikit-learn, Pandas, NumPy, and others commonly used in the ML ecosystem.
- Hands-on experience with GenAI APIs and tools, including deployment and integration of GenAI solutions into production systems.
- Experience across the full ML lifecycle, including data preprocessing, model training, evaluation, deployment, and monitoring in production environments.
- Expertise with MLOps tools and practices (e.g., MLflow, SageMaker, Docker, CI/CD pipelines), and the ability to set standards and best practices for the team.
- Excellent communication and presentation skills, capable of clearly articulating technical results and strategic implications to both technical and non-technical stakeholders, including senior leadership.
- Demonstrated track record of stakeholder engagement, leading cross-functional collaboration with product, engineering, and business teams.
- Solid foundation in statistics, including techniques such as hypothesis testing, significance testing, and probability theory.
- Comfortable working in an agile environment, driving iterative development cycles and mentoring cross-functional teams.
Benefits
What's in it for you
- Salary: £75,200 - £103,400
- Pension Scheme
- Discretionary Bonus Scheme
- Private Medical Insurance + Virtual GP
- Life Assurance
- Access to Furthr - a Climate Action app
- Free Mortgage Advice and Eye Tests
- Perks at Work - access to thousands of retail discounts
- 5% Flex Fund to spend on the benefits you want most
- 26 days holiday
- Flexible bank holidays, giving you an additional 8 days which you can choose to take whenever you like
- Progressive leave policies with no qualifying service periods, including 26 weeks full pay if you have a new addition to your family
- Dedicated personal learning and home office budgets
- Flexible working — we trust you to work in a way that suits your lifestyle
About
Inside Kaluza
Kaluza is the Energy Intelligence Platform, turning energy complexity into seamless coordination. They help energy companies overcome today's challenges while accelerating the shift to a clean, electrified future by orchestrating millions of real-time decisions across homes, devices, markets and grids.